126 lines
2.8 KiB
Python
126 lines
2.8 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import scienceplots
|
|
|
|
i = 1
|
|
|
|
names = [
|
|
"omnes_integrand",
|
|
"omnes_integrand_zoom",
|
|
"omnes_integrand_tan",
|
|
"phi0_integrand",
|
|
"phi0_integrand_zoom",
|
|
"phi0_integrand_tan",
|
|
"delta",
|
|
"omnes",
|
|
"phi0",
|
|
"phi0_delta_rel_diff",
|
|
]
|
|
|
|
files = [open("exports/" + n + ".txt") for n in names]
|
|
|
|
export_filenames = ["figures/" + n + ".png" for n in names]
|
|
|
|
titles = [
|
|
r"$\frac{\delta_1^1(s') - \delta_1^1(s)}{s'(s'-s)}$, $\sqrt{s}=1$ GeV",
|
|
r"$\frac{\delta_1^1(s') - \delta_1^1(s)}{s'(s'-s)}$, $\sqrt{s}=1$ GeV",
|
|
r"$\frac{1}{\cos^2(u)}\frac{\delta_1^1(\tan{u}) - \delta_1^1(s)}{\tan{u}(\tan{u}-s)}$, $\sqrt{s}=1$ GeV",
|
|
r"$\frac{\ln{|\frac{F(s')}{F(s)}|^2}}{(x^2+s_0)(x^2+s_0-s)}$, $\sqrt{s}=1$ GeV",
|
|
r"$\frac{\ln{|\frac{F(s')}{F(s)}|^2}}{(x^2+s_0)(x^2+s_0-s)}$, $\sqrt{s}=1$ GeV",
|
|
r"$\frac{1}{\cos^2(u)}\frac{\ln{|\frac{F(\tan^2{u}+s_0)}{F(s)}|^2}}{(\tan^2{u}+s_0)(\tan^2{u}+s_0-s)}$, $\sqrt{s}=1$ GeV",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
]
|
|
|
|
xlabels = [
|
|
r"$\sqrt{s}$ [GeV]",
|
|
r"$\sqrt{s}$ [GeV]",
|
|
r"$u$",
|
|
r"$x$",
|
|
r"$x$",
|
|
r"$u$",
|
|
r"$\sqrt{s}$ [GeV]",
|
|
r"$\sqrt{s}$ [GeV]",
|
|
r"$\sqrt{s}$ [GeV]",
|
|
r"$\sqrt{s}$ [GeV]",
|
|
]
|
|
|
|
ylabels = [
|
|
r"integrand",
|
|
r"integrand",
|
|
r"integrand",
|
|
r"integrand",
|
|
r"integrand",
|
|
r"integrand",
|
|
r"$\delta_1^1(s)$",
|
|
r"$|\Omega(s)|^2$",
|
|
r"$\phi_0(s)$",
|
|
r"$\frac{\phi_0(s)}{\delta_1^1(s)}$",
|
|
]
|
|
|
|
y_logarithmic = [
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
True,
|
|
False,
|
|
False,
|
|
]
|
|
|
|
x_sqrt = [
|
|
True,
|
|
True,
|
|
False,
|
|
False,
|
|
False,
|
|
False,
|
|
True,
|
|
True,
|
|
True,
|
|
True,
|
|
]
|
|
|
|
for i in range(len(names)):
|
|
print(i)
|
|
plt.figure()
|
|
filecont = []
|
|
for line in files[i]:
|
|
filecont.append(line.split(','))
|
|
|
|
data = []
|
|
for curve in filecont:
|
|
curve_numbers = []
|
|
for val in curve:
|
|
try:
|
|
curve_numbers.append(float(val))
|
|
except ValueError:
|
|
continue
|
|
if x_sqrt[i]:
|
|
curve_numbers_paired = np.array([[x**0.5 for x in curve_numbers[0::2]], curve_numbers[1::2]])
|
|
else:
|
|
curve_numbers_paired = np.array([curve_numbers[0::2], curve_numbers[1::2]])
|
|
data.append(curve_numbers_paired)
|
|
|
|
# Plotting
|
|
|
|
plt.style.use(['science'])
|
|
|
|
plt.figure(figsize=(4,3))
|
|
plt.title(titles[i], fontsize = 15)
|
|
if y_logarithmic[i]:
|
|
plt.yscale('log')
|
|
for j in range(len(data)):
|
|
plt.plot(data[j][0], data[j][1])
|
|
plt.xlabel(xlabels[i], fontsize = 12)
|
|
plt.ylabel(ylabels[i], fontsize = 12)
|
|
plt.grid(which='major', color='#000000', linestyle='-', alpha = 0.3)
|
|
plt.grid(which='minor', color='#000000', linestyle='-', alpha=0.1)
|
|
plt.savefig(export_filenames[i], dpi=400)
|
|
plt.close()
|